Windows 10 Home Key online Buy Windows 10 Home CD KEY Compare Prices. Activate the CD Key on the publisher website to download Windows 10 Home. Save money Windows 8.1 professional Key cheap

Как самостоятельно отремонтировать видеокарту — часть 1

Если вы четко понимаете ниже изложенный материал то вы можете самостоятельно ремонтировать видео карты. 

Как самому отремонтировать видеокарту.

(часть 1 статьи: Самостоятельный Ремонт видеокарты )

Основные параметры видеокарт, характеристики, 
виды видеокарт. Установка / снятие видеокарты. 
Основные понятия и компоненты  видеокарт.

Самостоятельный ремонт видеокарты компьютера (ноутбука)  Видеокарты имеют свою BIOS, которая подобна системной BIOS, но полностью независима от нее. Если вы включите монитор первым и немедленно посмотрите на экран, то сможете увидеть опознавательный знак BIOS видеоадаптера в самом начале запуска системы. видеокарты, подобно системной BIOS, хранится в микросхеме ROM; она содержит основные команды, которые предоставляют интерфейс между оборудованием видеоадаптера и программным обеспечением. Программа, которая обращается к функциям BIOS видеокарты, может быть автономным приложением, операционной системой или системной BIOS. Обращение к функциям BIOS позволяет вывести информацию о мониторе во время выполнения процедуры POST и начать загрузку системы до начала загрузки с диска любых других программных драйверов.

Обновление BIOS видеокарты может потребоваться в том случае, если старый адаптер используется в новой операционной системе или изготовитель обнаруживает существенный дефект в первоначальном коде программы.

Графический процессор 

Графический процессор видеокарты компьютера  Графический процессор, или набор микросхем, является сердцем любой видеокарты и характеризует быстродействие адаптера и его функциональные возможности. Две видеокарты различных производителей с одинаковыми процессорами зачастую демонстрируют схожую производительность и функции обработки графических данных. Кроме того, программные драйверы, с помощью которых операционные системы и приложения управляют видеокартой, как правило, разрабатываются именно с учетом параметров конкретного набора микросхем.

Видеоконтроллер

Видеоконтроллер видеокарты  Отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно больше, чем внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается ещё и RAMDAC. Современные графические адаптеры (ATI, nVidia) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.

Большинство видеокарт для хранения изображений при их обработке обходятся собственной видеопамятью; хотя некоторые видеоадаптеры AGP используют системную оперативную память для хранения трехмерных текстур, эта функция редко находит применение.

От объема видеопамяти зависит максимальная разрешающая способность экрана и глубина цвета, поддерживаемая адаптером. На рынке в настоящее время предлагаются модели с различным объемом видеопамяти: 128, 256, 512 Мбайт. Хотя больший объем видеопамяти не сказывается на скорости обработки графических данных, при использовании увеличенной шины данных (с 64 до 128 или 256 бит) или системной оперативной памяти для кэширования часто отображаемых объектов скорость видеокарты может существенно увеличиться.

 Видеопамять Кроме того, объем видеопамяти позволяет видеокарте отображать больше цветов и поддерживать более высокое разрешение, а также хранить и обрабатывать трехмерные текстуры в видеопамяти адаптера AGP/ PCI-E 16x, а не в ОЗУ системы.

Память DDR SDRAM. Этот тип памяти позволяет работать на удвоенной частоте по сравнению с обычной памятью SDRAM. Разработан для современных системных плат с частотой шины 133 МГц. В настоящее время DDR SDRAM используется во всех видеокартах среднего и высшего уровней.

Видеокарты с одним и тем же графическим процессором (GPU) могут взаимодействовать с видеопамятью, обладающей различными скоростными характеристиками.

Рассматривая память в системе отображения, следует также остановиться на формате обращения к памяти со стороны схем обработки изображения. В современной видеокарте все схемы, необходимые для формирования и обработки изображения, реализованы в специализированной микросхеме — графическом процессоре, установленном на этой же плате. Графический процессор и память обмениваются данными по локальной шине. Большинство современных адаптеров имеют 64-,128- или 256-разрядную шину

 

Цифроаналоговый преобразователь

RAMDAC - цифроаналоговый преобразователь Цифроаналоговый преобразователь видеокарты (обычно называемый RAMDAC) преобразует генерируемые компьютером цифровые изображения в аналоговые сигналы, которые может отображать монитор. Быстродействие цифроаналогового преобразователя измеряется в МГц, чем быстрее процесс преобразования, тем выше вертикальная частота регенерации.

В большинстве современных видеоадаптеров функции преобразователя поддерживаются непосредственно графическим процессором, однако у некоторых адаптеров с поддержкой нескольких мониторов есть отдельная микросхема RAMDAC, которая позволяет второму монитору работать с разрешением, отличным от установленного разрешения основного монитора.

При увеличении быстродействия цифроаналогового преобразователя происходит повышение частоты вертикальной регенерации, что позволяет достичь более высокого разрешения экрана при оптимальных частотах обновления (72-85 Гц и более).

 

Шина

PCI-E_PCI Express шина В настоящее время, наиболее распространенным является стандарт шины PCI-E (PCI Express) для персональных компьютеров, который сейчас приходит на замену AGP. Новая технология PCI-E обеспечивает достаточно широкую полосу пропускания шин ввода-вывода для удовлетворения растущих требований к скорости передачи данных по этим шинам. Ширину пропускания канала PCI Express можно масштабировать за счет добавления каналов с данными, при этом получаются соответствующие модификации шины (PCI-E x1, x4, x8, x16).

Производительность устройства PCI-E характеризуется числом используемых сигнальных линий. Одна линия имеет пропускную способность 250 Мбайт/с, в каждом направлении передачи сигналов. Так, интерфейс PCI-E 16x (16 линий) имеет пропускную способность 4 Гбайт/с.

Наличие двух одинаковых слотов PCI-E позволит использовать сразу два видеоадаптера в параллельном режиме SLI/CrossFire.

 

Основные характеристики

Основные характеристики видеокарт Современные графические процессоры содержат множество функциональных блоков, от количества и характеристик которых зависит и итоговая скорость рендеринга, влияющая на комфортность игры. По сравнительному количеству этих блоков в разных видеочипах можно примерно оценить, насколько быстр тот или иной GPU. Характеристик у видеочипов довольно много, в этом разделе мы рассмотрим самые важные из них.

 

Тактовая частота видеочипа

Рабочая частота GPU измеряется в мегагерцах, в миллионах тактов в секунду. Эта характеристика прямо влияет на производительность видеочипа, чем она выше, тем больший объем работы чип может выполнить в единицу времени, обработать большее количество вершин и пикселей. Пример: частота видеочипа, установленного на плате RADEON X1900 XTX равна 650 МГц, а точно такой же чип на RADEON X1900 XT работает на частоте в 625 МГц. Соответственно будут отличаться и все основные характеристики производительности. Но далеко не только рабочая частота чипа однозначно определяет производительность, на его скорость сильно влияет и архитектура: количество различных исполнительных блоков, их характеристики и т.п.

Тактовая частота процессора видеокарты

В последнее время участились случаи, когда тактовая частота для отдельных блоков GPU отличается от частоты работы всего остального чипа. То есть, разные части GPU работают на разных частотах, и сделано это для увеличения эффективности, ведь некоторые блоки способны работать на повышенных частотах, а другие — нет.

 

Скорость заполнения (филлрейт)

Скорость заполнения показывает, с какой скоростью видеочип способен отрисовывать пиксели. Различают два типа филлрейта: пиксельный (pixelfillrate) и текстурный (texelrate). Пиксельная скорость заполнения показывает скорость отрисовки пикселей на экране и зависит от рабочей частоты и количества блоков ROP (блоков операций растеризации и блендинга), а текстурная — это скорость выборки текстурных данных, которая зависит от частоты работы и количества текстурных блоков.


Количество блоков пиксельных шейдеров (или пиксельных процессоров)

 

Принципы обработки цвета процессором видеокарты Пиксельные процессоры — это одни из главных блоков видеочипа, которые выполняют специальные программы, известные также как пиксельные шейдеры. По числу блоков пиксельных шейдеров и их частоте можно сравнивать шейдерную производительность разных видеокарт. Так как большая часть игр сейчас ограничена производительностью исполнения пиксельных шейдеров (см. технологические обзоры игр), то количество этих блоков очень важно! Если одна модель видеокарты основана на GPU с 8 блоками пиксельных шейдеров, а другая из той же линейки — 16 блоками, то при прочих равных вторая будет вдвое быстрее обрабатывать пиксельные программы, и в целом будет производительнее. Но на основании одного лишь количества блоков делать однозначные выводы нельзя, обязательно нужно учесть и тактовую частоту и разную архитектуру блоков разных поколений и производителей чипов. Только по этим цифрам сразу можно сравнивать чипы только в пределах одной линейки одного производителя: AMD(ATI) или NVIDIA. В других же случаях нужно обращать внимание на тесты производительности.


 

Количество блоков вершинных шейдеров (или вершинных процессоров)

 Аналогично предыдущему пункту, эти блоки выполняют программы шейдеров, но уже вершинных. Данная характеристика важна для некоторых игр, но не так явно, как предыдущая, так как даже современными играми блоки вершинных шейдеров почти никогда не бывают загружены даже наполовину. И, так как производители балансируют количество разных блоков, не позволяя возникнуть большому перекосу в распределении сил, количеством вершинных процессоров при выборе видеокарты вполне можно пренебречь, учитывая их только при прочих равных характеристиках.


 

 

 

 

Количество унифицированных шейдерных блоков (или универсальных процессоров)


 

2 процессора, каждый их которых несет 8 пиксельных конвейеров с 1-им текстурным блоком на каждом Унифицированные шейдерные блоки объединяют два типа перечисленных выше блоков, они могут исполнять как вершинные, так и пиксельные программы (а также геометрические, которые появились в DirectX 10). Унификация блоков шейдеров значит, что код разных шейдерных программ (вершинных, пиксельных и геометрических) универсален, и соответствующие унифицированные процессоры могут выполнить любые программы из вышеперечисленных. Соответственно, в новых архитектурах число пиксельных, вершинных и геометрических шейдерных блоков как бы сливается в одно число — количество универсальных процессоров.


 

Блоки текстурирования (TMU)


 

Блоки текстурирования Эти блоки работают совместно с шейдерными процессорами всех указанных типов, ими осуществляется выборка и фильтрация текстурных данных, необходимых для построения сцены. Число текстурных блоков в видеочипе определяет текстурную производительность, скорость выборки из текстур. И хотя в последнее время большая часть расчетов осуществляется блоками шейдеров, нагрузка на блоки TMU до сих пор довольно велика, и с учетом упора некоторых приложений в производительность блоков текстурирования, можно сказать, что количество блоков TMU и соответствующая высокая текстурная производительность являются одними из важнейших параметров видеочипов. Особое влияние этот параметр оказывает на скорость при использовании трилинейной и анизотропной фильтраций, требующих дополнительных текстурных выборок.


 

Блоки операций растеризации (ROP)


 

ROP Блоки растеризации Блоки растеризации осуществляют операции записи рассчитанных видеокартой пикселей в буферы и операции их смешивания (блендинга). Как уже отмечалось выше, производительность блоков ROP влияет на филлрейт и это — одна из основных характеристик видеокарт. И хотя в последнее время её значение несколько снизилось, еще попадаются случаи, когда производительность приложений сильно зависит от скорости и количества блоков ROP. Чаще всего это объясняется активным использованием фильтров постобработки и включенным антиалиасингом при высоких настройках изображения.

 

Объем видеопамяти


Объем видеопамяти видеокарты

 Собственная память используется видеочипами для хранения необходимых данных: текстур, вершин, буферов и т.п. Казалось бы, что чем её больше — тем лучше. Но не всё так просто, оценка мощности видеокарты по объему видеопамяти — это наиболее распространенная ошибка! Значение объема памяти неопытные пользователи переоценивают чаще всего, используя его для сравнения разных моделей видеокарт. Оно и понятно — раз параметр, указываемый во всех источниках одним из первых, в два раза больше, то и скорость у решения должна быть в два раза выше, считают они. Реальность же от этого мифа отличается тем, что рост производительности растет до определенного объема и после его достижения попросту останавливается.

В каждом приложении есть определенный объем видеопамяти, которого хватает для всех данных, и хоть 4 ГБ туда поставь — у нее не появится причин для ускорения рендеринга, скорость будут ограничивать исполнительные блоки. Именно поэтому почти во всех случаях видеокарта с 320 Мбайт видеопамяти будет работать с той же скоростью, что и карта с 640 Мбайт (при прочих равных условиях). Ситуации, когда больший объем памяти приводит к видимому увеличению производительности, существуют, это очень требовательные приложения в высоких разрешениях и при максимальных настройках. Но такие случаи весьма редки, поэтому, объем памяти учитывать конечно нужно, но не забывая о том, что выше определенного объема производительность просто не растет, есть более важные параметры, такие как ширина шины памяти и ее рабочая частота.


 

Частота видеопамяти

частота видеопамяти видеокарты

 

 Еще одним параметром, влияющим на пропускную способность памяти, является её тактовая частота. А как мы поняли выше, повышение ПСП прямо влияет на производительность видеокарты в 3D приложениях. Частота шины памяти на современных видеокартах бывает от 500 МГц до 2000 МГц, то есть может отличаться в четыре раза. И так как ПСП зависит и от частоты памяти и от ширины ее шины, то память с 256-битной шиной, работающая на частоте 1000 МГц, будет иметь большую пропускную способность, по сравнению с 1400 МГц памятью с 128-битной шиной.


 

Типы памяти


GDDR4 Все современные типы памяти DDR и GDDR позволяют передавать в два раза большее количество данных на той же тактовой частоте за единицу времени, поэтому цифру её рабочей частоты зачастую указывают удвоенной (умножают на два). Так, если для DDR памяти указана частота 1400 МГц, то эта память работает на физической частоте в 700 МГц, но указывают так называемую «эффективную» частоту, то есть ту, на которой должна работать SDR память, чтобы обеспечить такую же пропускную способность.

Основное преимущество DDR2 памяти заключается в возможности работы на больших тактовых частотах, а соответственно — увеличении пропускной способности по сравнению с предыдущими технологиями. Это достигается за счет увеличенных задержек, которые, впрочем, не так важны для видеокарт.- это специально предназначенная для видеокарт память, с теми же технологиями, что и DDR2, но с улучшениями характеристик потребления и тепловыделения, что позволило создать микросхемы, работающие на более высоких тактовых частотах. И опять же, несмотря на то, что стандарт был разработан в ATI, первой видеокартой, ее использующей, стала вторая модификация NVIDIA GeForce FX 5700 Ultra, а следующей стала GeForce 6800 Ultra.

Ну а GDDR4 — это последнее поколение "графической" памяти, работающее почти в два раза быстрее, чем GDDR3. Основными отличиями GDDR4 от GDDR3, существенными для пользователей, являются в очередной раз повышенные рабочие частоты и сниженное энергопотребление. Технически, память GDDR4 не сильно отличается от GDDR3, это дальнейшее развитие тех же идей.

Итак, видеопамять самых современных типов: GDDR3 и GDDR4, отличается от DDR некоторыми деталями, но также работает с удвоенной передачей данных. В ней применяются некоторые специальные технологии, позволяющие поднять частоту работы. Так, GDDR2 память обычно работает на более высоких частотах, по сравнению с DDR, GDDR3 — на еще более высоких, ну а GDDR4 обеспечивает максимальную частоту и пропускную способность.


 

Интерфейсы установки видеокарт


 

Видеокарты бывают с AGP, PCI и PCI-express интерфейсами.

AGP-PCI-PCI-express


 

Существует несколько вариантов шины AGP, отличающихся по пропускной способности:

·AGP 1х — 266 Мб/с;

·AGP 2х — 533 Мб/с;

·AGP 4х -1,07 Гб/с;

·AGP 8х — 2,1 Гб/с.

Понятно, что чем выше пропускная способность графического интерфейса, тем лучше. Но в настоящее время разница в пропускной способности интерфейсов AGP и PCI-E 1.1 (не говоря о PCI-E 2.0) если и влияет на производительность видеосистемы, то не слишком, так что главное преимущество PCI-Express не в его высокой производительности, а в возможности масштабирования, позволяющей устанавливать в компьютер две, три и даже четыре видеокарты.(ScalableLinkInterface — масштабируемый объединительный интерфейс) — программно-аппаратная технология NVIDIA, обеспечивающая установку и совместную работу двух видеокарт в режиме Multi-GPU Rendering. Нагрузка между ними распределяется динамически, что позволяет значительно увеличить производительность видеосистемы и получить высокое качество отображения трехмерной графики.


motherboard SLI-mode


 

Для нормальной работы видеокарт в SLI-режиме, необходима материнская плата (пока только на чипсетах NVIDIA) с двумя графическими слотами, допускающими установку видеокарт с интерфейсом PCI-Express (NVIDIA GeForce 6×00 и более новых, причем обе видеокарты должны быть построены на одинаковых GPU). Для обмена информацией между ними, чаще всего используется специальный SLI- коннектор, хотя в отдельных случаях возможна связь через интерфейс PCI-Е.


SLI-mode 2


 

Во многих случаях использование SLI дает увеличение производительности 3D-приложений, хотя радикальное увеличение наблюдается в основном в приложениях, специально оптимизированных под эту технологию.

У компании ATI на инновацию NVIDIA SLI ответом является CrossFire и также позволяет использовать две видеокарты для увеличения производительности видеосистемы.


Внешние разъемы на видеокартах


 

Для подключения внешних видеоустройств на видеокартах, могут использоваться аналоговые интерфейсы VGA, RCA, S-Video и цифровые — DVI и HDMI:

стандартные видеоинтерфейсы
 

До последнего времени основным интерфейсом для вывода изображения на ЭЛТ и ЖК-мониторы являлся аналоговый VGA-выход (15-контактный разъем D-Sub);

аналоговый разъем S-Video (или S-VHS) применяется в основном для вывода компьютерного изображения на бытовые телевизоры и другую домашнюю видеотехнику. Существенным недостатком этого интерфейса является то, что в современных видеокартах могут использоваться несколько вариантов разъема S-Video, с разным количеством контактов и не всегда совместимых друг с другом;

современные ЖК-мониторы, проекторы, телевизоры и плазменные панели могут подключаться к видеокартам по цифровому видеоинтерфейсу DVI (DigitalVisualInterface). За счет того, что видеосигнал передается напрямую с видеокарты без двойного цифро/аналогового преобразования, DVI обеспечивает неискаженную передачу изображения, особенно заметную в высоких разрешениях. Интерфейс DVI может быть как исключительно цифровой DVI-D, так и комбинированный DVI-I, в котором наряду с цифровыми линиями имеются и аналоговые (VGA). Монитор с аналоговым VGA-разъемом подключается к DVI-I через специальный переходник;

разновидностью DVI является интерфейс Dual-Link DVI, обеспечивающий поддержку высокого разрешения (выше 1920 х 1200) по цифровому выходу DVI. Физически Dual-Link DVI является объединением двух отдельных каналов DVI в одном кабеле, что удваивает его пропускную способность;

Мультимедийный интерфейс HDMI (High Definition Multimedia Interface) присутствует в некоторых новых видеокартах, телевизорах и других домашних мультимедийных устройствах. Главная особенность HDMI — возможность передавать по одному кабелю на расстояние до 10 м наряду с цифровым видеосигналом еще и аудио без потери качества. Благодаря этому количество соединительных проводов существенно уменьшается.

Установка видеокарты (видеоплаты)

Установка видеокарты
 

Установка видеокарты, пожалуй, одна из самых простых процедур по установке аппаратного обеспечения. Новая видеокарта может не только обеспечить лучшее 3D-качество, но и улучшить производительность компьютера, качество и скорость проигрывания DVD.

Весь процесс установки видеокарты можно разбить на несколько простых шагов:

-Первый шаг: Общая подготовка перед установкой видеокарты.

Для того, чтобы произвести замену старой видеокарты или установить новую, потребуется инструменты, аппаратное и программное обеспечение.

Для установки видеокарты требуется: Крестовая отвертка, мануал по установке видеокарты, диск с драйвером для видеокарты

-Второй шаг: Подготовка компьютера перед установкой видеокарты.

Сначала надо закачать из Интернета (запросы поисковой системе — "драйверы для видеокарт", "BIOS для видеокарт") новый драйвер для видеокарты (или установить с компакт-диска с драйверами) а, если понадобится, то и новый BIOS. Необходимо удалить текущий драйвер и программное обеспечение для старой видеокарты. В некоторых случаях придется также поменять некоторые настройки в системном BIOS-е для нормальной работы новой видеокарты. Удаляем старый драйвер. Выключаем компьютер , чтобы затем запустить его в режиме защиты от сбоев (безопасный режим Windows). Необходимо удалить текущий драйвер в свойствах системы. Идём в

Меню пуск / Настройка / Панель управления / Система

Выбираем Диспетчер устройств (он находится на вкладке Оборудование), затем ищем опцию Видеоадаптеры.

В раскрывающемся меню появится текущая видеокарта. Кликаем по ней левой кнопкой мыши, выбираем вкладку Драйвер и в появившемся меню нажимаем на кнопку Удалить.

Чтобы загрузить Windows в безопасном режиме при загрузке компьютера надо нажать на клавишу F8. На экране появится меню, в котором необходимо выбрать Безопасный режим (SafeMode). Возможно со старой видеокартой было установлено программное обеспечение, работающее только с данной картой . Надо его удалить.

Ищем в Панель управления / Установка и удаление программ, ищем там нужную программу и удаляем её. После этого надо выключить компьютер.

-Третий шаг: Подготовка к установке видеокарты.

На этом этапе надо отсоединить все провода и штекеры из разъёмов системного блока и открыть сам блок. Для того, чтобы открыть блок надо просто открутить болты. Перед тем как открутить болты лучше провести отверткой по задней и боковой частям системного блока для того, чтобы снять статическое электричество.

Статическое электричество очень опасно. Случайно прикоснувшись, например, к плате оперативной памяти, можно испортить её навсегда.

Четвертый шаг: Удаление старой видеокарты.

Перед тем как выдернуть видеокарту из разъема, сначала надо тщательно осмотреть ее и вытащить все провода и кабели, подсоединенные к ней. У стандартных AGP и PCI видеокарт таких проводов быть не должно, но видеокарты , в которых предусмотрены мультимедийные возможности могут иметь кабель входа. Лучше запомнить и даже записать все провода и кабели, которые нужно отсоединить и одновременно посмотреть куда они будут подсоединяться в новой видеокарте. Некоторые материнские платы имеют специальный закрепляющий механизм для AGP видеокарт. Затем надо открутить винт, которым крепится к блоку старая видеокарта, и аккуратно вытащить карту. Вытаскивать карту надо двумя руками, совмещая движение вверх и слегка вправо.

-Пятый шаг: Установка новой видеокарты.

Устанавливаем новую видеокарту. При выборе видеокарты необходимо исходить из того, какой разъем используется в вашей материнской плате. Нужно посмотреть руководство по видеокарте — в нем должен быть указан нужный разъем. Затем ищем в мануале по материнской плате схему с указанием разъемов. Для точной вставки видеокарты в слот нужно взяться за оба конца видеокарты двумя руками и нажать вертикально вниз, не допуская перекосов и покачиваний. Видеокарта должна уверенно и крепко стоять прямо в разъеме. Поэтому надо убедиться, что видеокарта установлена надёжно (интерфейс видеокарты точно попал в слот материнской платы). Затем надо прикрепить видеокарту винтами к корпусу компьютера. Если оставить видеокарту незакрепленной, то это может привести к тому, что при подсоединении кабеля монитора видеокарта сместится и даже выйдет из слота. После закрепления видеокарты надо закрыть системный блок и подключить монитор.

Шестой шаг: Установка драйверов.

Если всё сделано правильно, то при включении компьютера увидим изображение, а если неправильно, то ничего не увидим на темном экране, зато услышим сигналы из динамика системного блока. После включения компьютера с вновь установленной видеокартой и успешной загрузки Windows (не надо обращать внимание на качество цветопередачи, драйвера же еще не установлены) система сообщит — "Обнаружено новое устройство". После этого сообщения в ответ на приглашение указать папку с драйверами надо указать путь к драйверам для новой видеокарты.

После установки новой видеокарты возможно придется заняться регулировкой монитора — сжать, растянуть, выровнять и т.д. После этого нужно настроить параметры видеокарты. Обычно нужно установить следующие параметры:

разрешение

глубина цвета

частота кадров

Для того чтобы открыть диалоговое окно Свойства экрана

(Display Properties) надо кликнуть правой кнопкой мыши на "Рабочем столе" и выбрать в появившемся меню команду Свойства (Properties). Перейдя на вкладку Параметры (Settings), можно выбрать Качество цветопередачи и Разрешение экрана.


Точный Айрон